

Frs 20, 21 were dissolved in CHCl_3 and refrigeration (-20°) resulted in crystallization of 2.5 g of cnicin (**1a**) [10] whose ^1H NMR spectrum compared with that of an authentic sample.

REFERENCES

1. Ronzoni, G. C. and Viegi, L. (1982) *Atti Soc. Tosc. Sci. Nat. Mem.* **89**, 99.
2. Jakupovic, J., Jia, Y., Pathak, V. P., Bohlmann, F. and King, R. M. (1986) *Planta Med.* **399**.
3. Herz, W. and Högenauer, G. (1962) *J. Org. Chem.* **27**, 905.
4. Herz, W. and Gibaja, S. (1972) *Phytochemistry* **11**, 2625.
5. Fraser, A. W. and Lewis, J. R. (1974) *Phytochemistry* **13**, 1561.
6. Kupchan, S. M., Sigel, C. W., Hemingway, R. L., Knox, J. R. and Udayamurthy, M. S. (1969) *Tetrahedron* **25**, 1603.
7. Gupta, S. R., Seshadri, T. R., Sharma, C. and Sharma, N. D. (1979) *Indian J. Chem.* **17B**, 37.
8. ApSimon, J. W., Haynes, N. B., Sim, K. Y. and Whalley, W. B. (1963) *J. Chem. Soc.* 3780.
9. Herz, W., Gast, C. M. and Subramaniam, P. S. (1968) *J. Org. Chem.* **33**, 2780.
10. Samek, Z., Holub, M., Herout, V. and Sorm, F. (1969) *Tetrahedron Letters* **34**, 2931.

Phytochemistry, Vol. 27, No. 6, pp. 1875-1878, 1988.
Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
© 1988 Pergamon Press plc

TERPENES FROM THE RED ALGA *SPHAEROCOCCUS CORONOPIFOLIUS* OF THE NORTH ADRIATIC SEA*

SALVATORE DE ROSA, SALVATORE DE STEFANO, PAOLA SCARPELLI and NEVENKA ZAVODNIK†

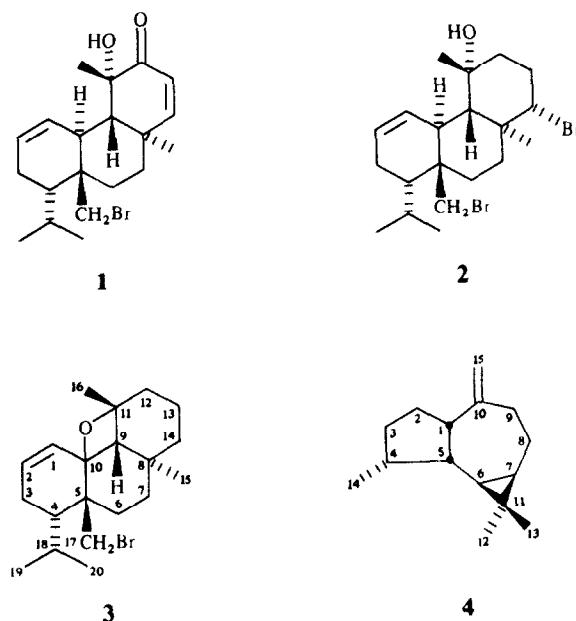
Instituto per la Chimica di Molecole di Interesse Biologico del C.N.R., via Toiano, 6, 80072 Arco Felice, Napoli, Italy; †Center for Marine Research, 'Rudjer Bošković' Institute, 52210 Rovinj, Yugoslavia

(Revised received 7 October 1987)

Key Word Index—*Sphaerococcus coronopifolius*; Rhodophyta; sesquiterpene; diterpenes.

Abstract—From the red alga *Sphaerococcus coronopifolius* collected in the north Adriatic Sea, four terpenes were isolated, viz. the sesquiterpene alloaromadendrene, the diterpenes bromosphaerol, sphaerococcenol A and the new compound sphaeroxetane. The structure of the new diterpenoid was proposed on the basis of its spectral data, including 2D-NMR spectroscopy, in comparison with known related compounds. All ^{13}C chemical shifts of known compounds are assigned.

INTRODUCTION


Continuing our studies on the seaweeds of the north Adriatic Sea, we have investigated the red alga *Sphaerococcus coronopifolius* collected near Plomin, Yugoslavia. From the same alga, collected in Spain, Fenical *et al.* [2] described the isolation of sphaerococcenol A (**1**), while Fattorusso *et al.* [3] reported the isolation of bromosphaerol (**2**) as the main diterpenoid together with a series of minor diterpenoids [4-6] isolated from the same alga collected in Sicily (Tyrrhenian Sea). We wish to describe herein the isolation from the alga, of a new bromoditerpenoid, named sphaeroxetane (**3**), of two previously reported related diterpenoids, sphaerococcenol A [2] and bromosphaerol [3], and of the sesquiterpene alloaromadendrene [7] (**4**).

RESULTS AND DISCUSSION

The chloroform-soluble material from chloroform-methanol extracts of dried *S. Coronopifolius* was chromatographed on silica gel, using increasing concentrations of diethyl ether in petrol as the eluent. Three bromoditerpenes and one sesquiterpene were isolated. In order of decreasing polarity, these were bromosphaerol (**2**) (0.04% dry wt), sphaerococcenol A (**1**) (0.01%), sphaeroxetane (**3**) (0.008%) and alloaromadendrene (**4**) (0.01%). The spectra of **1** and **2** were in excellent agreement with published data [2,3]. Using 2D-NMR spectroscopy, proton-proton correlation (COSY) and 2D-heteronuclear correlation we were able to assign all the ^{13}C chemical shifts, not completely assigned in the literature, for the two known diterpenoids (see Table 1).

The spectral data, including 2D-NMR spectroscopy, of **4** were in agreement with the gross structure of an aromadendrene skeleton. The stereochemistry was deduced by NOESY with the aid of a Dreiding model. The

* Part 3 in the series 'Chemical studies of north Adriatic seaweeds'. For part 2 see ref. [1].

absence of NOEs between the exomethylene group and the proton on C-2, and between the methyl doublet (H-14) and the proton H-6, exclude the *trans* ring-junction in the hydroazulene skeleton, while the presence of NOE

between the H-5 and the methyl singlet at δ 0.95 (H-13) confirms the *cis* junction. Furthermore, the absence of NOE between the methyl doublet (H-14) and the H-1 establishes also the stereochemistry at C-4, as depicted in the formula. The value for the optical rotation $[\alpha]_{D}^{25}$ 12, excludes the possibility of a 4-epialloaromadendrene structure [7] and thus is additional proof for the proposed structure.

Sphaerocetane (3) obtained as an unstable oil had the molecular formula $C_{20}H_{31}OBr$ (mass spectral and NMR data). Its 1H NMR and ^{13}C NMR spectra (Table 1) were strongly reminiscent of those 1 and 2. The 1H NMR spectrum shows four methyl signals doublets at δ 0.89 and 0.94 (3H each, $J=6.9$ Hz, H-19 and H-20) and singlets at δ 1.21 and 1.23 (H-15 and H-16). The two methyls doublets are part of an isopropyl group. In fact, both are coupled with a methine at δ 1.96, that is coupled with an another methine at δ 1.78 (from COSY). The loss of 43 mu (C_3H_7) in the mass spectrum, also confirms the presence of an isopropyl group in the molecule; the fragments m/z 287 and 273, attributed to $[M - Br]^+$ and $[M - CH_2Br]^+$, respectively, are characteristic for a CH_2Br group linked to a quaternary carbon atom.

Moreover, the 1H NMR spectrum showed a multiplet at δ 2.74, a singlet at 2.41, a series of signals between 2.10 and 1.20, an AB system at 3.68 (2H, $J=10.3$ Hz, H-17), and two vinyl protons, a broad doublet at 5.26 ($J=10.0$ Hz, H-1) and a double multiplet at 5.67 ($J=10.0$ Hz, H-2). The presence in the ^{13}C NMR spectrum of two signals, at 131.03 (d) and 126.95 (d), confirms the presence of one disubstituted double bond. The occurrence of signals at 89.42 (s) and 81.40 (s) in the ^{13}C NMR spect-

Table 1. ^{13}C NMR chemical shifts for compounds 1-3 and 1H NMR chemical shifts for compound 3*

C	Carbon-13			Proton
	1	2	3	
1	128.31	128.65	131.03 d	5.26 br d (10.0)
2	127.67	126.88	126.95 d	5.67 dm (10.0)
3	22.38	21.91	22.92 t	2.05-1.98
4	42.16	42.64	45.25 d	1.78
5	40.31	40.76	47.10 s	—
6	33.21	36.52	34.35 t	1.80-1.58
7	24.61	25.04	23.38 t	1.80-1.55
8	36.90	41.89	32.00 s	—
9	45.75	50.67	47.08 d	2.41 s
10	35.61	37.41	81.40 s	—
11	75.36	72.75	89.42 s	—
12	203.34	46.18	41.47 t	1.86-1.72
13	124.51	30.16	29.71 t	1.26
14	161.94	68.80	34.97 t	2.74-1.55
15	21.07	14.07	18.25 q	1.21 s
16	31.38	35.02	27.61 q	1.23 s
17	39.82	40.36	44.41 t	3.68 ABq (10.3)
18	25.95	25.88	26.21 d	1.96
19	26.00†	20.01†	25.85 q	0.94 d (6.9)
20	19.45†	19.78†	18.75 q	0.89 d (6.9)

*The ^{13}C chemical shifts were assigned by 2D- heteronuclear correlation. Only the multiplicities of 3 are reported. Coupling constants (Hz) are in parentheses.

†Assignments may be reversed.

rum, and considering the molecular formula, it is possible to deduce the presence of an ether oxygen in the molecule; the low frequencies of these signals exclude the presence in the molecule of an epoxy group. Since the molecular formula of **3** requires five degrees of unsaturation, **3** must therefore be tetracyclic. Considering the NMR spectra of **1** and **2**, we could assume for **3** the same carbon skeleton. Bearing in mind this consideration and the spectral data quoted so far, we could conclude that the oxygen is located in an oxetane ring. The COSY experiment allowed us to assign all the chemical shifts in the ¹H NMR spectrum (Table 1) and provided additional proof for the proposed structure **3**.

From 2D-NOE spectroscopy (NOESY) of **3** it (Table 2) was possible to establish the unique assignment of chemical shifts of two methyls at δ 1.23 and δ 1.21 from the presence of NOE between the methyl at δ 1.23 and the vinyl proton at δ 5.26. The presence of NOE between the methine at δ 2.41 and the methylene at δ 3.68, shows the same stereochemistry of these groups and provides additional evidence for the presence of the oxetane ring, because only if the methine is present in position 9 it is possible to observe this NOE. Other NOEs reported in Table 2 are also in accordance with the proposed structure.

The toxicity of compounds **1–4** were tested in the *Artemia salina* shrimp bioassay [10] which is used as an in house assay substituting for 9KB and 9PS cytotoxicities. Only compound **2** showed significant activity (LC_{50} 17.9 μ g/ml).

The isolation of sphaerococcenol A, bromosphaerol and the new sphaeroxetane as the main diterpenes in *S. coronopifolius* collected in the Northern Adriatic Sea, is in contrast to the same alga collected in Spain and Sicily from which the main diterpenoids were **1** and **2** respectively. This could be evidence [1, 11] that the same algal species living in different habitats can produce different secondary metabolites. It is possible, however, that such differences could be related to the growth stage of the alga.

EXPERIMENTAL

MS were recorded at 70 eV. TLC was carried out using precoated silica gel F₂₅₄ plates (Merck). Kieselgel 60 (Merck) was used for other chromatography. ¹H and ¹³C NMR spectra were recorded at 500 and 125 MHz, respectively, in CDCl₃ with TMS as int. std; 2D-NMR were obtained using a Bruker microprogram. COSY-45 spectra were obtained by co-addition of 16 scans at each of 256 t_1 values. A 512 \times 1024 data matrix had been Fourier transformed with sine-bell filters in both domains, using DISN86 software. The digital resolution was 8 Hz/point in both domains. The 2D-hetero nuclear correlations were obtained by co-addition of 128 or 240 scans at each of 256 t_1 values, with J_{CH} =140 Hz for polarization transfer, to obtain direct C-H correlation. A 512 \times 1024 data matrix had been Fourier transformed with Lorentz-Gauss (LBI = -3.0, GB1 = 0.15, LB2 = -9.0, GB2 = 0.3) filters in both domains. The digital resolution was 5.8 Hz/point and 19.5 Hz/point in F1 and F2 domain, respectively.

Extraction and isolation of compounds. *S. coronopifolius* (Good. et Woodw.) C. Ag. collected in December 1985 and 1986 at Plomin (YU), was dried at 60°. A voucher specimen has been deposited in the herbarium of the Center for Marine Research, 'Rudjer Bošković' Institute, Rovinj. The dried alga (410 g after

Table 2. Magnetization exchange by cross relation (NOE) for compound **3** in CDCl₃, as obtained from NOESY*

Cross peak co-ordinates below the diagonal (δ_x – δ_y)	Protons correlated
5.26–1.23	H-1; Me-11
3.68–2.41	H-17; H-9
2.41–1.86	H-9; H β -12
2.41–1.55	H-9; H β -14 and or H β -7
2.74–1.26	H α -14; H-13

¹H NOESY spectra of **3** in CDCl₃ was recorded at 500 MHz, with the mixing time t_m = 1 sec \pm 180 msec (randomly modulated [8,9]. Only the cross-peaks not sensitive to strong filtering are reported.

extn) was extd with CHCl₃–MeOH (1:1). The extract was evapd *in vacuo* to obtain a brown gum (4.5 g), that was dissolved in CHCl₃. The CHCl₃ sol part (1.1 g), after evapn of solvent was chromatographed on a column of silica gel, using a solvent gradient system from petrol (40–70°) to Et₂O as eluent. Fractions exhibiting similar TLC profiles were combined and re-chromatographed to obtain **4,3,1** and **2** in order of increasing polarity.

Sphaerococcenol A, **1**, 43 mg, mp 181–183°; $[\alpha]_D$ -78 (CHCl₃; c 1.0); UV λ_{max}^{MeOH} nm (log ϵ): 228 (3.87); IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3600–3400, 2980, 2940 and 1680; EIMS m/z (rel. int.): 382 [M + 2]⁺ (6), 380 [M]⁺ (6), 339 (14), 337 [M – C₃H₇]⁺ (14), 301 [M – Br]⁺ (100), 287 [M – CH₂Br]⁺ (30), 283 (10) and 269 (14); ¹H NMR: δ 0.92 (3H, d, J =6.8 Hz, H-19 or H-20), 0.97 (3H, d, J =6.8 Hz, H-19 or H-20), 1.09 (3H, s, H-15), 1.33 (3H, s, H-16), 1.46 (1H, m, H-6), 1.59 (1H, m, H-7), 1.68 (1H, m, H-6), 1.76 (1H, m, H-7), 1.78 (1H, m, H-4), 1.90–2.0 (3H, m, H-3, H-11, H-18), 2.16 (1H, m, H-3), 2.90 (1H, br d, J =13.0 Hz, H-10), 3.72 (1H, d, J =10.7 Hz, H-17), 3.89 (1H, d, J =10.7 Hz, H-17), 5.75 (1H, dm, J =10.3 Hz, H-2), 6.05 (1H, br d, J =10.3 Hz, H-1), 6.07 (1H, d, J =9.8 Hz, H-13), 6.83 (1H, d, J =9.8 Hz, H-14); ¹³C NMR see Table 1.

Bromosphaerol, **2**, 170 mg; $[\alpha]_D$ 0.4 (CHCl₃; c 1.8); IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3600–3400; EIMS m/z (rel. int.): 450 [M + 4]⁺ (2), 448 [M + 2]⁺ (4), 446 [M]⁺ (2), 433 (6), 431 (12), 429 (6), 369 (8), 367 [M – Br]⁺ (8), 355 (100), 353 [M – CH₂Br + H]⁺ (100), 337 (98), 335 (98), 273 [M – CH₂Br – HBr]⁺ (53), 255 (78); ¹H NMR: δ 0.90 (3H, d, J =6.8 Hz, H-19 or H-20), 0.96 (3H, d, J =6.8 Hz, H-19 or H-20), 1.28 (1H, m, H-6), 1.30 (3H, s, H-15), 1.38 (3H, s, H-16), 1.46–1.54 (2H, m, H-7 and H-9), 1.65–1.88 (5H, m, H-4, H-6, H-7 and H-12), 1.92–2.0 (3H, m, H-3, H-13 and H-18), 2.13 (1H, m, H-3), 2.41 (1H, ddd, J =13.3, 12.4 and 4.1 Hz, H-13), 2.97 (1H, br d, J =10.2 Hz, H-10), 3.61 (1H, d, J =10.5 Hz, H-17), 3.93 (1H, d, J =10.5 Hz, H-17), 4.0 (1H, dd, J =12.4 and 3.4 Hz, H-14), 5.69 (1H, dm, J =10.5 Hz, H-2) and 6.01 (1H, br d, J =10.5 Hz, H-1); ¹³C NMR see Table 1.

Sphaeroxetane, **3**, 33 mg, $[\alpha]_D$ -9 (CHCl₃; c 0.57); IR ν_{max}^{film} cm⁻¹: 2960, 2930, 1460, 1380, 1240, 1170 and 1090; EIMS m/z (rel. int.): 368 [M + 2]⁺ (4), 366 [M]⁺ (4), 353 (3), 351 [M – Me]⁺ (4), 325 (3), 323 [M – C₃H₇]⁺ (3), 310 (18), 308 [M – Me – C₃H₇]⁺ (17), 287 [M – Br]⁺ (31), 273 [M – CH₂Br]⁺ (51), 204 (80), 189 (100), 175 (61), 173 (59) and 161 (96); ¹H and ¹³C NMR see Table 1.

Alloaromadendrene. **4**, 40 mg, $[\alpha]_D -12$ (CHCl_3 ; c 1.65); IR $\nu_{\text{max}}^{\text{film}}$ cm^{-1} : 3080, 1675, 1460, 1375 and 890; EIMS m/z (rel. int.): 204 [M^+] (64), 189 (41), 161 (100), 147 (71), 133 (68), 119 (93), 107 (86) and 105 (100); ^1H NMR: δ 0.25 (1H, *dd*, $J=11.0$ and 9.6 Hz, H-6), 0.56 (1H, *m*, H-7), 0.94 (3H, *d*, $J=7.2$ Hz, H-14), 0.96 (3H, *s*, H-13), 1.00 (3H, *s*, H-12), 1.26 (1H, *m*, H-8), 1.32 (1H, *m*, H-3), 1.73 (2H, *m*, H-2), 1.80–1.90 (3H, *m*, H-3; H-5 and H-8), 2.07 (1H, *m*, H-4), 2.32 (2H, *m*, H-9), 2.67 (1H, *m*, H-1), 4.71 (1H, *br s*, H-15) and 4.73 (1H, *br s*, H-15); ^{13}C NMR: δ 152.5 (s, C-10), 109.6 (t, C-15), 51.0 (d, C-1), 42.3 (d, C-5), 37.8 (d, C-4), 35.8 (t, C-9), 31.3 (t, C-3), 28.7 (q, C-12), 28.3 (t, C-2), 25.0 (d, C-7), 23.7 (d, C-6), 22.2 (t, C-8), 17.3 (s, C-11), 16.4 (q, C-14) and 15.8 (q, C-13).

Bioassay. In the *Artemia salina* shrimp assay technique [10] samples of **1–4** (5 mg) were dissolved in DMSO (500 μl). Appropriate amounts of solns were transferred into vials, to obtain three vials for each concn (5, 10, 20 and 50 $\mu\text{l}/\text{ml}$) and artificial sea water was added to make 5 ml. Ten shrimps were then added to each vial. Survivors were counted after 24 hr exposure and the percent deaths at each dose and control were determined. LC_{50} were determined using the probit analysis method described in ref. [12].

Acknowledgements—This work is part of an Italian–Yugoslav programme on mutual research of the Adriatic Sea and has been performed with financial support of CNR Roma and SIZ III S. R. Croatia, Zagreb. Bioassays have been carried out with financial support of 'Progetti Strategici' of CNR. We thank Mrs R. Sankovic' and Mr C. Iodice for technical assistance. The authors are also obliged to Dr A. De Giulio for bioassays.

REFERENCES

1. De Rosa, S., De Stefano, S. and Zavodnik, N. (1986) *Phytochemistry* **25**, 2179.
2. Fenical, W., Finer, J. and Clardy, J. (1976) *Tetrahedron Letters* 731.
3. Fattorusso, E., Magno, S., Santacroce, C., Sica, D., Di Blasio, B., Pedone, C., Impellizeri, G., Mangiafico, S., Oriente, G., Piattelli, M. and Sciuto, S. (1976) *Gazz. Chim. Ital.* **106**, 779.
4. Cafieri, F., Fattorusso, E. and Santacroce, C. (1984) *Tetrahedron Letters* **25**, 3141.
5. Cafieri, F., Fattorusso, E., Mayol, L. and Santacroce, C. (1985) *J. Org. Chem.* **50**, 3982.
6. Cafieri, F., De Napoli, L., Fattorusso, E. and Santacroce, C. (1987) *Phytochemistry* **26**, 471.
7. Büchi, G., Hofheinz, W. and Paukstelis, J. V. (1969) *J. Am. Chem. Soc.* **91**, 6473.
8. Wider, G., Macura, S., Kumar, A., Ernst, R. R. and Wüthrich, K. (1984) *J. Magn. Reson.* **56**, 207.
9. Macura, S., Huang, Y., Suter, D. and Ernst, R. R. (1981) *J. Magn. Reson.* **43**, 259.
10. Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. and McLaughlin, J. L. (1982) *Planta Med.* **45**, 31.
11. De Rosa, S., De Stefano, S., Macura, S., Trivellone, E. and Zavodnik, N. (1984) *Tetrahedron* **40**, 4991.
12. Finney, D. J. (1971) *Probit Analysis* 3rd Edn. Cambridge University Press, Cambridge.

Phytochemistry, Vol. 27, No. 6, pp. 1878–1881, 1988.
Printed in Great Britain.

0031 9422/88 \$3.00 + 0.00
Pergamon Press plc.

THE ABSOLUTE CONFIGURATION OF GRINDELIC ACID

MATTEO ADINOLFI, MARINA DELLA GRECA and LORENZO MANGONI

Dipartimento di Chimica Organica e Biologica, Università di Napoli, Via Mezzocannone 16, 80134 Napoli, Italy

(Received 30 July 1987)

Key Word Index—*Grindelia*; Compositae; grindelic acid; 6-oxogrindelic acid; 7 α ,8 α -epoxygrindelic acid; grindelane diterpenoids.

Abstract—Contrary to recent assignments, the labdane absolute configuration of grindelic acid, 6-oxogrindelic acid and 7 α ,8 α -epoxygrindelic acid is confirmed through application of the CD exciton chirality method.

We have been interested in the structure of the grindelane diterpenoids isolated from the resin of *Grindelia robusta*, namely grindelic acid **1a**, 6-oxogrindelic acid **2a** and 7 α ,8 α -epoxygrindelic acid **3a** [1–3] for some years. Their stereochemistry was defined by chemical correlation to sclareol **4** [4, 5] and was confirmed by total synthesis from sclareol itself [6]. More recently, the diterpenoid

content of several *Grindelia* species has been investigated and many functional derivatives of grindelic acid have been isolated [7–16]. In one of the most recent reports [14] the isolation of grindelic acid from the aerial parts of *G. perennis*, *G. aphanactis*, *G. boliviiana* and *G. chiloensis* is described and the *ent*-labdane structure **5a** is proposed for the compound. This was deduced on the grounds of